Kähler-ricci Flow on Stable Fano Manifolds
نویسنده
چکیده
We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.
منابع مشابه
Kähler-Ricci flow, Kähler-Einstein metric, and K-stability
We prove the existence of Kähler-Einstein metric on a K-stable Fano manifold using the recent compactness result on Kähler-Ricci flows. The key ingredient is an algebro-geometric description of the asymptotic behavior of Kähler-Ricci flow on Fano manifolds. This is in turn based on a general finite dimensional discussion, which is interesting in its own and could potentially apply to other prob...
متن کاملMultiplier ideal sheaves and the Kähler-Ricci flow on toric Fano manifolds with large symmetry
The purpose of this paper is to calculate the support of the multiplier ideal sheaves derived from the Kähler-Ricci flow on certain toric Fano manifolds with large symmetry. The early idea of this paper has already been in Appendix of [11].
متن کاملRemarks on Kähler Ricci Flow
We study some estimates along the Kähler Ricci flow on Fano manifolds. Using these estimates, we show the convergence of Kähler Ricci flow directly if the α-invariant of the canonical class is greater than n n+1 . Applying these convergence theorems, we can give a Kähler Ricci flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of KE metrics on a lot of Fano sur...
متن کاملThe Kähler Ricci Flow on Fano Surfaces (I)
Suppose {(M, g(t)), 0 ≤ t <∞} is a Kähler Ricci flow solution on a Fano surface. If |Rm| is not uniformly bounded along this flow, we can blowup at the maximal curvature points to obtain a limit complete Riemannian manifold X. We show that X must have certain topological and geometric properties. Using these properties, we are able to prove that |Rm| is uniformly bounded along every Kähler Ricc...
متن کاملResolutions of non-regular Ricci-flat Kähler cones
We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...
متن کامل